On 4/30/18 11:04 AM, Seppo Ingalsuo wrote:
This patch adds the DMIC audio capture driver for SOF DAI component use. The DMIC feature allows to directly attach one to (typically) four PDM digital microphones into Intel SoC without a separate codec IC. This is supported by APL and most successor platforms.
Corresponding patches are needed for kernel driver and topology to enable this feature.
Tested in APL UP squared board without connected microphones SOF git master 3ad69eb715a09de9a0b91c56c9cca8a79ead00a9
Signed-off-by: Seppo Ingalsuo seppo.ingalsuo@linux.intel.com
configure.ac | 6 + src/audio/dai.c | 5 + src/drivers/Makefile.am | 6 +- src/drivers/dmic.c | 1331 +++++++++++++++++++++++++++++++++++++++++++++++
this is a big one...
src/include/sof/dmic.h | 318 +++++++++++ src/include/sof/io.h | 8 + src/include/sof/trace.h | 3 +- src/include/uapi/ipc.h | 61 ++-
and all those files could really be in separate patches since they prepare the work for dmic enablement.
8 files changed, 1734 insertions(+), 4 deletions(-) create mode 100644 src/drivers/dmic.c create mode 100644 src/include/sof/dmic.h
[...]
+/* This function returns a raw list of potential microphone clock and decimation
- modes for achieving requested sample rates. The search is constrained by
- decimation HW capabililies and setup parameters. The parameters such as
- microphone clock min/max and duty cycle requirements need be checked from
- used microphone component datasheet.
- */
+static void find_modes(struct decim_modes *modes,
- struct sof_ipc_dai_dmic_params *prm, uint32_t fs)
+{
- int clkdiv_min;
- int clkdiv_max;
- int clkdiv;
- int c1;
- int c2;
- int du_min;
- int du_max;
- int pdmclk;
- int osr;
- int mfir;
- int mcic;
- int ioclk_test;
- int osr_min = DMIC_MIN_OSR;
- int i = 0;
- /* Defaults, empty result */
- modes->num_of_modes = 0;
- /* The FIFO is not requested if sample rate is set to zero. Just
* return in such case with num_of_modes as zero.
*/
- if (fs == 0)
return;
- /* Override DMIC_MIN_OSR for very high sample rates, use as minimum
* the nominal clock for the high rates.
*/
- if (fs >= DMIC_HIGH_RATE_MIN_FS)
osr_min = DMIC_HIGH_RATE_OSR_MIN;
- /* Check for sane pdm clock, min 100 kHz, max ioclk/2 */
- if (prm->pdmclk_max < DMIC_HW_PDM_CLK_MIN ||
prm->pdmclk_max > DMIC_HW_IOCLK / 2) {
trace_dmic_error("pmx");
return;
- }
- if (prm->pdmclk_min < DMIC_HW_PDM_CLK_MIN ||
prm->pdmclk_min > prm->pdmclk_max) {
trace_dmic_error("pmn");
return;
- }
- /* Check for sane duty cycle */
- if (prm->duty_min > prm->duty_max) {
trace_dmic_error("pdu");
return;
- }
- if (prm->duty_min < DMIC_HW_DUTY_MIN ||
prm->duty_min > DMIC_HW_DUTY_MAX) {
trace_dmic_error("pdn");
return;
- }
- if (prm->duty_max < DMIC_HW_DUTY_MIN ||
prm->duty_max > DMIC_HW_DUTY_MAX) {
trace_dmic_error("pdx");
return;
- }
- /* Min and max clock dividers */
- clkdiv_min = ceil_divide(DMIC_HW_IOCLK, prm->pdmclk_max);
- clkdiv_min = MAX(clkdiv_min, DMIC_HW_CIC_DECIM_MIN);
- clkdiv_max = DMIC_HW_IOCLK / prm->pdmclk_min;
- /* Loop possible clock dividers and check based on resulting
* oversampling ratio that CIC and FIR decimation ratios are
* feasible. The ratios need to be integers. Also the mic clock
* duty cycle need to be within limits.
*/
- for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) {
c1 = clkdiv >> 1;
c2 = clkdiv - c1;
du_min = 100 * c1 / clkdiv;
du_min = 100 * (clkdiv/2)/clkdiv -> 50?
du_max = 100 * c2 / clkdiv;
c2 = clkdiv - c1 = clkdiv/2, so du_min == du_max ? what am I missing?
pdmclk = DMIC_HW_IOCLK / clkdiv;
osr = pdmclk / fs;
/* Check that OSR constraints is met and clock duty cycle does
* not exceed microphone specification. If exceed proceed to
* next clkdiv.
*/
if (osr < osr_min || du_min < prm->duty_min ||
du_max > prm->duty_max)
continue;
/* Loop FIR decimation factors candidates. If the
* integer divided decimation factors and clock dividers
* as multiplied with sample rate match the IO clock
* rate the division was exact and such decimation mode
* is possible. Then check that CIC decimation constraints
* are met. The passed decimation modes are added to array.
*/
for (mfir = DMIC_HW_FIR_DECIM_MIN;
mfir <= DMIC_HW_FIR_DECIM_MAX; mfir++) {
mcic = osr / mfir;
ioclk_test = fs * mfir * mcic * clkdiv;
if (ioclk_test == DMIC_HW_IOCLK &&
mcic >= DMIC_HW_CIC_DECIM_MIN &&
mcic <= DMIC_HW_CIC_DECIM_MAX &&
i < DMIC_MAX_MODES) {
modes->clkdiv[i] = clkdiv;
modes->mcic[i] = mcic;
modes->mfir[i] = mfir;
i++;
modes->num_of_modes = i;
}
}
- }
+}
+/* The previous raw modes list contains sane configuration possibilities. When
- there is request for both FIFOs A and B operation this function returns
- list of compatible settings.
- */
+static void match_modes(struct matched_modes *c, struct decim_modes *a,
- struct decim_modes *b)
+{
- int idx[DMIC_MAX_MODES];
- int idx_length;
- int i;
- int n;
- int m;
- /* Check if previous search got results. */
- c->num_of_modes = 0;
- if (a->num_of_modes == 0 && b->num_of_modes == 0) {
/* Nothing to do */
return;
- }
- /* Check for request only for FIFO A or B. In such case pass list for
* A or B as such.
*/
- if (b->num_of_modes == 0) {
c->num_of_modes = a->num_of_modes;
for (i = 0; i < a->num_of_modes; i++) {
c->clkdiv[i] = a->clkdiv[i];
c->mcic[i] = a->mcic[i];
c->mfir_a[i] = a->mfir[i];
c->mfir_b[i] = 0;
is this initialization to zero needed?
}
return;
- }
- if (a->num_of_modes == 0) {
c->num_of_modes = b->num_of_modes;
for (i = 0; i < b->num_of_modes; i++) {
c->clkdiv[i] = b->clkdiv[i];
c->mcic[i] = b->mcic[i];
c->mfir_b[i] = b->mfir[i];
c->mfir_a[i] = 0;
same here, is this initialization needed?
}
return;
- }
- /* Merge a list of compatible modes */
- i = 0;
- for (n = 0; n < a->num_of_modes; n++) {
/* Find all indices of values a->clkdiv[n] in b->clkdiv[] */
idx_length = find_equal(idx, b->clkdiv, a->clkdiv[n],
b->num_of_modes, 0);
for (m = 0; m < idx_length; m++) {
if (b->mcic[idx[m]] == a->mcic[n]) {
c->clkdiv[i] = a->clkdiv[n];
c->mcic[i] = a->mcic[n];
c->mfir_a[i] = a->mfir[n];
c->mfir_b[i] = b->mfir[idx[m]];
i++;
}
}
c->num_of_modes = i;
- }
+}
+/* Finds a suitable FIR decimation filter from the included set */ +static struct pdm_decim *get_fir(struct dmic_configuration *cfg, int mfir) +{
- int i;
- int fs;
- int cic_fs;
- int fir_max_length;
- struct pdm_decim *fir = NULL;
- if (mfir <= 0)
return fir;
- cic_fs = DMIC_HW_IOCLK / cfg->clkdiv / cfg->mcic;
- fs = cic_fs / mfir;
- /* FIR max. length depends on available cycles and coef RAM
* length. Exceeding this length sets HW overrun status and
* overwrite of other register.
*/
- fir_max_length = MIN(DMIC_HW_FIR_LENGTH_MAX,
DMIC_HW_IOCLK / fs / 2 - DMIC_FIR_PIPELINE_OVERHEAD);
- for (i = 0; i < DMIC_FIR_LIST_LENGTH; i++) {
if (fir_list[i]->decim_factor == mfir &&
fir_list[i]->length <= fir_max_length) {
/* Store pointer, break from loop to avoid a
* Possible other mode with lower FIR length.
*/
fir = fir_list[i];
break;
}
- }
- return fir;
+}
+/* Calculate scale and shift to use for FIR coefficients. Scale is applied
- before write to HW coef RAM. Shift will be programmed to HW register.
- */
+static int fir_coef_scale(int32_t *fir_scale, int *fir_shift, int add_shift,
- const int32_t coef[], int coef_length, int32_t gain)
+{
- int32_t amax;
- int32_t new_amax;
- int32_t new_scale;
- int32_t fir_gain;
- int shift;
- const int32_t coef_max_val = Q_CONVERT_FLOAT(0.9999, 20); /* Q1.20 */
- /* Multiply gain passed from CIC with output full scale, result Q4.20 */
- fir_gain = Q_MULTSR_32X32((int64_t)gain, DMIC_HW_SENS_Q23, 20, 23, 20);
- /* Find the largest FIR coefficient value */
- amax = find_max_abs_int32((int32_t *)coef, coef_length);
- /* Scale with FIR gain */
- new_amax = Q_MULTSR_32X32((int64_t)amax, fir_gain, 31, 20, 20);
- if (new_amax <= 0)
return -EINVAL;
- /* Needed scale for FIR taps, target is 0.9999 max */
- new_scale = (int32_t)((((int64_t)coef_max_val << 20)) / new_amax);
- /* Find shift value */
- if (new_scale == 0)
return -EINVAL;
- shift = 0;
- while ((new_scale << shift) < (1 << 20))
shift++;
don't we have some sort of macro for this (find number of leading zeroes)?
- /* Add to shift in storate Q31 format and store to configuration */
- *fir_shift = shift + add_shift;
- /* Compensate shift value to scale and store to configuration
* as Q1.31. Also apply raw 32 bit to actual HW FIR coef
* precision.
*/
- *fir_scale = (fir_gain >> shift);
- return 0;
+}
+/* This function selects with a simple criteria one mode to set up the
- decimator. For the settings chosen for FIFOs A and B output a lookup
- is done for FIR coefficients from the included coefficients tables.
- For some decimation factors there may be several length coefficient sets.
- It is due to possible restruction of decimation engine cycles per given
- sample rate. If the coefficients length is exceeded the lookup continues.
- Therefore the list of coefficient set must present the filters for a
- decimation factor in decreasing length order.
- Note: If there is no filter available an error is returned. The parameters
- should be reviewed for such case. If still a filter is missing it should be
- added into the included set. FIR decimation with a high factor usually
- needs compromizes into specifications and is not desirable.
- */
+static int select_mode(struct dmic_configuration *cfg,
- struct matched_modes *modes)
+{
- int32_t g_cic;
- int32_t g_tmp;
- int32_t fir_in_max;
- int32_t cic_out_max;
- int32_t gain_to_fir;
- int idx[DMIC_MAX_MODES];
- int n = 1;
- int mmin;
- int count;
- int *mfir;
- int mcic;
- int bits_cic;
- int ret;
- /* If there are more than one possibilities select a mode with lowest
* FIR decimation factor. If there are several select mode with highest
* ioclk divider to minimize microphone power consumption. The highest
* clock divisors are in the end of list so select the last of list.
* The minimum OSR criteria used in previous ensures that quality in
* the candidates should be sufficient.
*/
- if (modes->num_of_modes == 0) {
trace_dmic_error("nom");
return -EINVAL;
- }
- if (modes->mfir_a[0] > 0)
mfir = modes->mfir_a;
- else
mfir = modes->mfir_b;
does look like the initialization done above has a side effect here... worth a comment maybe?
- mmin = find_min(mfir, modes->num_of_modes);
- count = find_equal(idx, mfir, mmin, modes->num_of_modes, 0);
- n = idx[count - 1];
- /* Get microphone clock and decimation parameters for used mode from
* the list.
*/
- cfg->clkdiv = modes->clkdiv[n];
- cfg->mfir_a = modes->mfir_a[n];
- cfg->mfir_b = modes->mfir_b[n];
- cfg->mcic = modes->mcic[n];
- cfg->fir_a = NULL;
- cfg->fir_b = NULL;
- /* Find raw FIR coefficients to match the decimation foctors of FIR
factors
* A and B.
*/
- if (cfg->mfir_a > 0) {
cfg->fir_a = get_fir(cfg, cfg->mfir_a);
if (!cfg->fir_a) {
trace_dmic_error("fam");
trace_value(cfg->mfir_a);
return -EINVAL;
}
- }
- if (cfg->mfir_b > 0) {
cfg->fir_b = get_fir(cfg, cfg->mfir_b);
if (!cfg->fir_b) {
trace_dmic_error("fbm");
trace_value(cfg->mfir_b);
return -EINVAL;
}
- }
- /* Calculate CIC shift from the decimation factor specific gain.
*/
- mcic = cfg->mcic;
- g_cic = mcic * mcic * mcic * mcic * mcic;
yikes, what is this mcic^5 ?
- g_tmp = g_cic;
- bits_cic = 1;
- if (g_tmp < 0) {
/* Erroneus decimation factor and CIC gain */
erroneous?
trace_dmic_error("gci");
return -EINVAL;
- }
- while (g_tmp > 0) {
g_tmp = g_tmp >> 1;
bits_cic++;
- }
this again looks like finding the first non-zero bit
- cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT;
- /* Calculate remaining gain to FIR as Q4.20. */
- fir_in_max = (1 << (DMIC_HW_BITS_FIR_INPUT - 1));
- if (cfg->cic_shift >= 0)
cic_out_max = g_cic >> cfg->cic_shift;
- else
cic_out_max = g_cic << -cfg->cic_shift;
- gain_to_fir = (int32_t)((((int64_t) fir_in_max) << 20) / cic_out_max);
- /* Calculate FIR scale and shift */
- if (cfg->mfir_a > 0) {
cfg->fir_a_length = cfg->fir_a->length;
ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift,
cfg->fir_a->shift, cfg->fir_a->coef, cfg->fir_a->length,
gain_to_fir);
if (ret < 0) {
/* Invalid coefficient set found, should not happen. */
trace_dmic_error("ina");
return -EINVAL;
}
- } else {
cfg->fir_a_scale = 0;
cfg->fir_a_shift = 0;
cfg->fir_a_length = 0;
- }
- if (cfg->mfir_b > 0) {
cfg->fir_b_length = cfg->fir_b->length;
ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift,
cfg->fir_b->shift, cfg->fir_b->coef, cfg->fir_b->length,
gain_to_fir);
if (ret < 0) {
/* Invalid coefficient set found, should not happen. */
trace_dmic_error("inb");
return -EINVAL;
}
- } else {
cfg->fir_b_scale = 0;
cfg->fir_b_shift = 0;
cfg->fir_b_length = 0;
- }
- return 0;
+}
+/* The FIFO input packer mode (IPM) settings are somewhat different in
- HW versions. This helper function returns a suitable IPM bit field
- value to use.
- */
+#if DMIC_HW_VERSION == 1
+static inline void ipm_helper(int *ipm, int stereo[], int swap[],
- struct sof_ipc_dai_dmic_params *dmic)
+{
- int pdm[DMIC_HW_CONTROLLERS];
- int i;
- /* Loop number of PDM controllers in the configuration. If mic A
* or B is enabled then a pdm controller is marked as active. Also it
* is checked whether the controller should operate as stereo or mono
* left (A) or mono right (B) mode. Mono right mode is setup as channel
* swapped mono left.
*/
- for (i = 0; i < dmic->number_of_pdm_controllers; i++) {
if (dmic->pdm[i].enable_mic_a > 0 ||
dmic->pdm[i].enable_mic_b > 0)
pdm[i] = 1;
else
pdm[i] = 0;
if (dmic->pdm[i].enable_mic_a > 0 &&
dmic->pdm[i].enable_mic_b > 0) {
stereo[i] = 1;
swap[i] = 0;
} else {
stereo[i] = 0;
if (dmic->pdm[i].enable_mic_a == 0)
swap[i] = 1;
else
swap[i] = 0;
}
the logic is weird here.
if (a || b) ... else ...
if (a && b) ... else // this could be a || b or !a && !b??
- }
- /* IPM indicates active pdm controllers. */
- *ipm = 0;
- if (pdm[0] == 0 && pdm[1] > 0)
*ipm = 1;
- if (pdm[0] > 0 && pdm[1] > 0)
*ipm = 2;
+} +#endif
+#if DMIC_HW_VERSION == 2
+static inline void source_ipm_helper(int source[], int *ipm, int stereo[],
- int swap[], struct sof_ipc_dai_dmic_params *dmic)
+{
- int pdm[DMIC_HW_CONTROLLERS];
- int i;
- int n = 0;
- /* Loop number of PDM controllers in the configuration. If mic A
* or B is enabled then a pdm controller is marked as active. Also it
* is checked whether the controller should operate as stereo or mono
* left (A) or mono right (B) mode. Mono right mode is setup as channel
* swapped mono left. The function returns also in array source[] the
* indice of enabled pdm controllers to be used for IPM configuration.
*/
- for (i = 0; i < dmic->number_of_pdm_controllers; i++) {
if (dmic->pdm[i].enable_mic_a > 0 ||
dmic->pdm[i].enable_mic_b > 0) {
pdm[i] = 1;
source[n] = i;
n++;
} else {
pdm[i] = 0;
swap[i] = 0;
}
if (dmic->pdm[i].enable_mic_a > 0 &&
dmic->pdm[i].enable_mic_b > 0) {
stereo[i] = 1;
swap[i] = 0;
} else {
stereo[i] = 0;
if (dmic->pdm[i].enable_mic_a == 0)
swap[i] = 1;
else
swap[i] = 0;
}
- }
- /* IPM bit field is set to count of active pdm controllers. */
- *ipm = pdm[0];
- for (i = 0; i < dmic->number_of_pdm_controllers; i++)
*ipm += pdm[i];
+} +#endif
+static int configure_registers(struct dai *dai, struct dmic_configuration *cfg,
- struct sof_ipc_dai_dmic_params *dmic)
+{
- int stereo[DMIC_HW_CONTROLLERS];
- int swap[DMIC_HW_CONTROLLERS];
- uint32_t val;
- int32_t ci;
- uint32_t cu;
- int ipm;
- int of0;
- int of1;
- int fir_decim;
- int fir_length;
- int length;
- int edge;
- int dccomp;
- int cic_start_a;
- int cic_start_b;
- int fir_start_a;
- int fir_start_b;
- int soft_reset;
- int i;
- int j;
- struct dmic_pdata *pdata = dai_get_drvdata(dai);
- int array_a = 0;
- int array_b = 0;
- int cic_mute = 0;
- int fir_mute = 0;
- int bfth = 1; /* Should be 3 for 8 entries, 1 is 2 entries */
- int th = 0; /* Used with TIE=1 */
- /* Normal start sequence */
- dccomp = 1;
- soft_reset = 1;
- cic_start_a = 0;
- cic_start_b = 0;
- fir_start_a = 0;
- fir_start_b = 0;
+#if DMIC_HW_VERSION == 2
- int source[4] = {0, 0, 0, 0};
+#endif
- /* pdata is set by dmic_probe(), error if it has not been set */
- if (!pdata) {
trace_dmic_error("cfr");
return -EINVAL;
- }
- /* Sanity checks */
- if (dmic->number_of_pdm_controllers > DMIC_HW_CONTROLLERS) {
trace_dmic_error("num");
return -EINVAL;
- }
- /* OUTCONTROL0 and OUTCONTROL1 */
- trace_dmic("reg");
- of0 = (dmic->fifo_bits_a == 32) ? 2 : 0;
- of1 = (dmic->fifo_bits_b == 32) ? 2 : 0;
+#if DMIC_HW_VERSION == 1
- ipm_helper(&ipm, stereo, swap, dmic);
- val = OUTCONTROL0_TIE(0) |
OUTCONTROL0_SIP(0) |
OUTCONTROL0_FINIT(1) |
OUTCONTROL0_FCI(0) |
OUTCONTROL0_BFTH(bfth) |
OUTCONTROL0_OF(of0) |
OUTCONTROL0_IPM(ipm) |
OUTCONTROL0_TH(th);
- dmic_write(dai, OUTCONTROL0, val);
- trace_value(val);
- val = OUTCONTROL1_TIE(0) |
OUTCONTROL1_SIP(0) |
OUTCONTROL1_FINIT(1) |
OUTCONTROL1_FCI(0) |
OUTCONTROL1_BFTH(bfth) |
OUTCONTROL1_OF(of1) |
OUTCONTROL1_IPM(ipm) |
OUTCONTROL1_TH(th);
- dmic_write(dai, OUTCONTROL1, val);
- trace_value(val);
+#endif
+#if DMIC_HW_VERSION == 2
- source_ipm_helper(source, &ipm, stereo, swap, dmic);
- val = OUTCONTROL0_TIE(0) |
OUTCONTROL0_SIP(0) |
OUTCONTROL0_FINIT(1) |
OUTCONTROL0_FCI(0) |
OUTCONTROL0_BFTH(3) |
OUTCONTROL0_OF(of0) |
OUTCONTROL0_NUMBER_OF_DECIMATORS(ipm) |
OUTCONTROL0_IPM_SOURCE_1(source[0]) |
OUTCONTROL0_IPM_SOURCE_2(source[1]) |
OUTCONTROL0_IPM_SOURCE_3(source[2]) |
OUTCONTROL0_IPM_SOURCE_4(source[3]) |
OUTCONTROL0_TH(3);
- dmic_write(dai, OUTCONTROL0, val);
- trace_value(val);
- val = OUTCONTROL1_TIE(0) |
OUTCONTROL1_SIP(0) |
OUTCONTROL1_FINIT(1) |
OUTCONTROL1_FCI(0) |
OUTCONTROL1_BFTH(3) |
OUTCONTROL1_OF(of1) |
OUTCONTROL1_NUMBER_OF_DECIMATORS(ipm) |
OUTCONTROL1_IPM_SOURCE_1(source[0]) |
OUTCONTROL1_IPM_SOURCE_2(source[1]) |
OUTCONTROL1_IPM_SOURCE_3(source[2]) |
OUTCONTROL1_IPM_SOURCE_4(source[3]) |
OUTCONTROL1_TH(3);
- dmic_write(dai, OUTCONTROL1, val);
- trace_value(val);
+#endif
- /* Mark enabled microphones into private data to be later used
* for starting correct parts of the HW.
*/
- for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
pdata->enable[i] = (dmic->pdm[i].enable_mic_b << 1) |
dmic->pdm[i].enable_mic_a;
- }
- for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
/* CIC */
val = CIC_CONTROL_SOFT_RESET(soft_reset) |
CIC_CONTROL_CIC_START_B(cic_start_b) |
CIC_CONTROL_CIC_START_A(cic_start_a) |
CIC_CONTROL_MIC_B_POLARITY(dmic->pdm[i].polarity_mic_a) |
CIC_CONTROL_MIC_A_POLARITY(dmic->pdm[i].polarity_mic_b) |
CIC_CONTROL_MIC_MUTE(cic_mute) |
CIC_CONTROL_STEREO_MODE(stereo[i]);
dmic_write(dai, base[i] + CIC_CONTROL, val);
trace_value(val);
val = CIC_CONFIG_CIC_SHIFT(cfg->cic_shift + 8) |
CIC_CONFIG_COMB_COUNT(cfg->mcic - 1);
dmic_write(dai, base[i] + CIC_CONFIG, val);
trace_value(val);
/* Mono right channel mic usage requires swap of PDM channels
* since the mono decimation is done with only left channel
* processing active.
*/
edge = dmic->pdm[i].clk_edge;
if (swap[i])
edge = edge ^ 1;
! edge?
val = MIC_CONTROL_PDM_CLKDIV(cfg->clkdiv - 2) |
MIC_CONTROL_PDM_SKEW(dmic->pdm[i].skew) |
MIC_CONTROL_CLK_EDGE(edge) |
MIC_CONTROL_PDM_EN_B(cic_start_b) |
MIC_CONTROL_PDM_EN_A(cic_start_a);
dmic_write(dai, base[i] + MIC_CONTROL, val);
trace_value(val);
/* FIR A */
fir_decim = MAX(cfg->mfir_a - 1, 0);
fir_length = MAX(cfg->fir_a_length - 1, 0);
val = FIR_CONTROL_A_START(fir_start_a) |
FIR_CONTROL_A_ARRAY_START_EN(array_a) |
FIR_CONTROL_A_DCCOMP(dccomp) |
FIR_CONTROL_A_MUTE(fir_mute) |
FIR_CONTROL_A_STEREO(stereo[i]);
dmic_write(dai, base[i] + FIR_CONTROL_A, val);
trace_value(val);
val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) |
FIR_CONFIG_A_FIR_SHIFT(cfg->fir_a_shift) |
FIR_CONFIG_A_FIR_LENGTH(fir_length);
dmic_write(dai, base[i] + FIR_CONFIG_A, val);
trace_value(val);
val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0);
dmic_write(dai, base[i] + DC_OFFSET_LEFT_A, val);
trace_value(val);
val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0);
dmic_write(dai, base[i] + DC_OFFSET_RIGHT_A, val);
trace_value(val);
val = OUT_GAIN_LEFT_A_GAIN(0);
dmic_write(dai, base[i] + OUT_GAIN_LEFT_A, val);
trace_value(val);
val = OUT_GAIN_RIGHT_A_GAIN(0);
dmic_write(dai, base[i] + OUT_GAIN_RIGHT_A, val);
trace_value(val);
/* FIR B */
fir_decim = MAX(cfg->mfir_b - 1, 0);
fir_length = MAX(cfg->fir_b_length - 1, 0);
val = FIR_CONTROL_B_START(fir_start_b) |
FIR_CONTROL_B_ARRAY_START_EN(array_b) |
FIR_CONTROL_B_DCCOMP(dccomp) |
FIR_CONTROL_B_MUTE(fir_mute) |
FIR_CONTROL_B_STEREO(stereo[i]);
dmic_write(dai, base[i] + FIR_CONTROL_B, val);
trace_value(val);
val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) |
FIR_CONFIG_B_FIR_SHIFT(cfg->fir_b_shift) |
FIR_CONFIG_B_FIR_LENGTH(fir_length);
dmic_write(dai, base[i] + FIR_CONFIG_B, val);
trace_value(val);
val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0);
dmic_write(dai, base[i] + DC_OFFSET_LEFT_B, val);
trace_value(val);
trace_value(val);
val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0);
dmic_write(dai, base[i] + DC_OFFSET_RIGHT_B, val);
trace_value(val);
val = OUT_GAIN_LEFT_B_GAIN(0);
dmic_write(dai, base[i] + OUT_GAIN_LEFT_B, val);
trace_value(val);
val = OUT_GAIN_RIGHT_B_GAIN(0);
dmic_write(dai, base[i] + OUT_GAIN_RIGHT_B, val);
trace_value(val);
/* Write coef RAM A with scaled coefficient in reverse order */
length = cfg->fir_a_length;
for (j = 0; j < length; j++) {
ci = (int32_t)Q_MULTSR_32X32(
(int64_t)cfg->fir_a->coef[j],
cfg->fir_a_scale, 31, 20, DMIC_HW_FIR_COEF_Q);
cu = FIR_COEF_A(ci);
dmic_write(dai, coef_base_a[i]
+ ((length - j - 1) << 2), cu);
}
/* Write coef RAM B with scaled coefficient in reverse order */
length = cfg->fir_b_length;
for (j = 0; j < length; j++) {
ci = (int32_t)Q_MULTSR_32X32(
(int64_t)cfg->fir_b->coef[j],
cfg->fir_b_scale, 31, 20, DMIC_HW_FIR_COEF_Q);
cu = FIR_COEF_B(ci);
dmic_write(dai, coef_base_b[i]
+ ((length - j - 1) << 2), cu);
}
- }
- /* Function dmic_start() uses these to start the used FIFOs */
- if (cfg->mfir_a > 0)
pdata->fifo_a = 1;
- else
pdata->fifo_a = 0;
- if (cfg->mfir_b > 0)
pdata->fifo_b = 1;
- else
pdata->fifo_b = 0;
- return 0;
+}
+static int dmic_set_config(struct dai *dai, struct sof_ipc_dai_config *config) +{
- struct decim_modes modes_a;
- struct decim_modes modes_b;
- struct matched_modes modes_ab;
- struct dmic_configuration cfg;
- int ret;
- struct sof_ipc_dai_dmic_params *prm = &config->dmic;
- struct dmic_pdata *dmic = dai_get_drvdata(dai);
- trace_dmic("dsc");
+#if defined DMIC_FORCE_CONFIG
- /* This is a temporary workaound to set parameters while
* there is no driver and topology scripts support to
* set these. Also the PCM sample format(s) and sample rate(s)
* setting would be better to be common with other DAI types.
*/
- prm->driver_ipc_version = 1;
- prm->pdmclk_min = 768000; /* Min 768 kHz */
- prm->pdmclk_max = 4800000; /* Max 4.80 MHz */
- prm->fifo_fs_a = 48000;
- prm->fifo_fs_b = 0;
- prm->fifo_bits_a = 32;
- prm->fifo_bits_b = 0;
- prm->duty_min = 40; /* Min. 40% */
- prm->duty_max = 60; /* Max. 60% */
- prm->number_of_pdm_controllers = 2;
- prm->pdm[0].clk_edge = 0;
- prm->pdm[0].enable_mic_a = 1; /* Left */
- prm->pdm[0].enable_mic_b = 1; /* Right */
- prm->pdm[0].polarity_mic_a = 0;
- prm->pdm[0].polarity_mic_b = 0;
- prm->pdm[0].skew = 0;
- prm->pdm[1].clk_edge = 0;
- prm->pdm[1].enable_mic_a = 0; /* Left */
- prm->pdm[1].enable_mic_b = 0; /* Right */
- prm->pdm[1].polarity_mic_a = 0;
- prm->pdm[1].polarity_mic_b = 0;
- prm->pdm[1].skew = 0;
+#endif
- trace_value(prm->driver_ipc_version);
- trace_value(prm->pdmclk_min);
- trace_value(prm->pdmclk_max);
- trace_value(prm->fifo_fs_a);
- trace_value(prm->fifo_fs_b);
- trace_value(prm->fifo_bits_a);
- trace_value(prm->fifo_bits_b);
- trace_value(prm->duty_min);
- trace_value(prm->duty_max);
- trace_value(prm->number_of_pdm_controllers);
- if (prm->driver_ipc_version != DMIC_IPC_VERSION) {
trace_dmic_error("ver");
return -EINVAL;
- }
- /* Match and select optimal decimators configuration for FIFOs A and B
* paths. This setup phase is still abstract. Successful completion
* points struct cfg to FIR coefficients and contains the scale value
* to use for FIR coefficient RAM write as well as the CIC and FIR
* shift values.
*/
- find_modes(&modes_a, prm, prm->fifo_fs_a);
- if (modes_a.num_of_modes == 0 && prm->fifo_fs_a > 0) {
trace_dmic_error("amo");
return -EINVAL;
- }
- find_modes(&modes_b, prm, prm->fifo_fs_b);
- if (modes_b.num_of_modes == 0 && prm->fifo_fs_b > 0) {
trace_dmic_error("bmo");
return -EINVAL;
- }
- match_modes(&modes_ab, &modes_a, &modes_b);
- ret = select_mode(&cfg, &modes_ab);
- if (ret < 0) {
trace_dmic_error("smo");
return -EINVAL;
- }
- trace_dmic("cfg");
- trace_value(cfg.clkdiv);
- trace_value(cfg.mcic);
- trace_value(cfg.mfir_a);
- trace_value(cfg.mfir_b);
- trace_value(cfg.fir_a_length);
- trace_value(cfg.fir_b_length);
- trace_value(cfg.cic_shift);
- trace_value(cfg.fir_a_shift);
- trace_value(cfg.fir_b_shift);
- /* Struct reg contains a mirror of actual HW registers. Determine
* register bits configuration from decimator configuration and the
* requested parameters.
*/
- ret = configure_registers(dai, &cfg, prm);
- if (ret < 0) {
trace_dmic_error("cor");
return -EINVAL;
- }
- dmic->state = COMP_STATE_PREPARE;
- return 0;
+}
+/* start the DMIC for capture */ +static void dmic_start(struct dai *dai, int direction) +{
- struct dmic_pdata *dmic = dai_get_drvdata(dai);
- int i;
- int mic_a;
- int mic_b;
- int fir_a;
- int fir_b;
- if (direction != DAI_DIR_CAPTURE)
return;
- /* enable port */
- spin_lock(&dmic->lock);
- trace_dmic("sta");
- dmic->state = COMP_STATE_ACTIVE;
- if (dmic->fifo_a) {
trace_dmic("ffa");
/* Clear FIFO A initialize, Enable interrupts to DSP,
* Start FIFO A packer.
*/
dmic_update_bits(dai, OUTCONTROL0,
OUTCONTROL0_FINIT_BIT | OUTCONTROL0_SIP_BIT,
OUTCONTROL0_SIP_BIT);
- }
- if (dmic->fifo_b) {
trace_dmic("ffb");
/* Clear FIFO B initialize, Enable interrupts to DSP,
* Start FIFO B packer.
*/
dmic_update_bits(dai, OUTCONTROL1,
OUTCONTROL1_FINIT_BIT | OUTCONTROL1_SIP_BIT,
OUTCONTROL1_SIP_BIT);
- }
- for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
mic_a = dmic->enable[i] & 1;
mic_b = (dmic->enable[i] & 2) >> 1;
if (dmic->fifo_a)
fir_a = (dmic->enable[i] > 0) ? 1 : 0;
else
fir_a = 0;
if (dmic->fifo_b)
fir_b = (dmic->enable[i] > 0) ? 1 : 0;
else
fir_b = 0;
trace_dmic("mfn");
trace_value(mic_a);
trace_value(mic_b);
trace_value(fir_a);
trace_value(fir_b);
dmic_update_bits(dai, base[i] + CIC_CONTROL,
CIC_CONTROL_CIC_START_A_BIT |
CIC_CONTROL_CIC_START_B_BIT,
CIC_CONTROL_CIC_START_A(mic_a) |
CIC_CONTROL_CIC_START_B(mic_b));
dmic_update_bits(dai, base[i] + MIC_CONTROL,
MIC_CONTROL_PDM_EN_A_BIT |
MIC_CONTROL_PDM_EN_B_BIT,
MIC_CONTROL_PDM_EN_A(mic_a) |
MIC_CONTROL_PDM_EN_B(mic_b));
dmic_update_bits(dai, base[i] + FIR_CONTROL_A,
FIR_CONTROL_A_START_BIT, FIR_CONTROL_A_START(fir_a));
dmic_update_bits(dai, base[i] + FIR_CONTROL_B,
FIR_CONTROL_B_START_BIT, FIR_CONTROL_B_START(fir_b));
- }
- /* Clear soft reset for all/used PDM controllers. This should
* start capture in sync.
*/
- trace_dmic("unr");
- for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
dmic_update_bits(dai, base[i] + CIC_CONTROL,
CIC_CONTROL_SOFT_RESET_BIT, 0);
- }
- spin_unlock(&dmic->lock);
- /* Currently there's no DMIC HW internal mutings and wait times
* applied into this start sequence. It can be implemented here if
* start of audio capture would contain clicks and/or noise and it
* is not suppressed by gain ramp somewhere in the capture pipe.
*/
- trace_dmic("run");
+}
+/* stop the DMIC for capture */ +static void dmic_stop(struct dai *dai) +{
- struct dmic_pdata *dmic = dai_get_drvdata(dai);
- int i;
- trace_dmic("sto")
- spin_lock(&dmic->lock);
- /* stop Rx if we are not capturing */
- if (dmic->state != COMP_STATE_ACTIVE) {
/* Set every PDM controller to soft reset */
trace_dmic("sre");
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
dmic_update_bits(dai, base[i] + CIC_CONTROL,
CIC_CONTROL_SOFT_RESET_BIT, 0);
}
/* Stop FIFO packers and set FIFO initialize bits */
dmic_update_bits(dai, OUTCONTROL0,
OUTCONTROL0_SIP_BIT | OUTCONTROL0_FINIT_BIT,
OUTCONTROL0_FINIT_BIT);
dmic_update_bits(dai, OUTCONTROL1,
OUTCONTROL1_SIP_BIT | OUTCONTROL1_FINIT_BIT,
OUTCONTROL1_FINIT_BIT);
dmic->state = COMP_STATE_PREPARE;
- }
- /* Set soft reset for all PDM controllers.
*/
- trace_dmic("sre");
- for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
dmic_update_bits(dai, base[i] + CIC_CONTROL,
CIC_CONTROL_SOFT_RESET_BIT, CIC_CONTROL_SOFT_RESET_BIT);
- }
- spin_unlock(&dmic->lock);
+}
+/* save DMIC context prior to entering D3 */ +static int dmic_context_store(struct dai *dai) +{
- /* TODO: Nothing stored at the moment. Could read the registers into
* persisten memory if needed but the large coef RAM is not desirable
* to copy. It would be better to store selected mode parametesr from
* previous configuration request and re-program registers from
* scratch.
*/
- return 0;
+}
+/* restore DMIC context after leaving D3 */ +static int dmic_context_restore(struct dai *dai) +{
- /* Nothing restored at the moment. */
- return 0;
+}
+static int dmic_trigger(struct dai *dai, int cmd, int direction) +{
- struct dmic_pdata *dmic = dai_get_drvdata(dai);
- trace_dmic("tri");
- /* dai private is set in dmic_probe(), error if not set */
- if (!dmic) {
trace_dmic_error("trn");
return -EINVAL;
- }
- if (direction != DAI_DIR_CAPTURE) {
trace_dmic_error("cap");
return -EINVAL;
- }
- switch (cmd) {
- case COMP_TRIGGER_START:
if (dmic->state == COMP_STATE_PREPARE ||
dmic->state == COMP_STATE_PAUSED) {
dmic_start(dai, direction);
} else {
trace_dmic_error("cst");
trace_value(dmic->state);
}
break;
- case COMP_TRIGGER_RELEASE:
if (dmic->state == COMP_STATE_PREPARE) {
dmic_start(dai, direction);
} else {
trace_dmic_error("crl");
trace_value(dmic->state);
}
break;
- case COMP_TRIGGER_STOP:
- case COMP_TRIGGER_PAUSE:
dmic->state = COMP_STATE_PAUSED;
dmic_stop(dai);
shouldn't the state assignment be protected by a spinlock (as done for the start case)? Also is this really PAUSED?
break;
- case COMP_TRIGGER_RESUME:
dmic_context_restore(dai);
break;
- case COMP_TRIGGER_SUSPEND:
dmic_context_store(dai);
break;
- default:
break;
- }
- return 0;
+}
+/* TODO: No idea what should be done here. Currently only trace the
- status register that contains a few status and error bit fields.
- */
+static void dmic_irq_handler(void *data) +{
- struct dai *dai = data;
- uint32_t val;
- /* Trace OUTSTAT0 register */
- val = dmic_read(dai, OUTSTAT0);
- trace_dmic("irq");
- if (val & OUTSTAT0_ROR_BIT)
trace_dmic_error("eor"); /* Full fifo or PDM overrrun */
- trace_value(dmic_read(dai, OUTSTAT0));
- /* clear IRQ */
- platform_interrupt_clear(dmic_irq(dai), 1);
+}
+static int dmic_probe(struct dai *dai) +{
- struct dmic_pdata *dmic;
- trace_dmic("pro");
- /* allocate private data */
- dmic = rzalloc(RZONE_SYS, SOF_MEM_CAPS_RAM, sizeof(*dmic));
- dai_set_drvdata(dai, dmic);
- spinlock_init(&dmic->lock);
- /* Set state, note there is no playback direction support */
- dmic->state = COMP_STATE_READY;
- /* register our IRQ handler */
- interrupt_register(dmic_irq(dai), dmic_irq_handler, dai);
- platform_interrupt_unmask(dmic_irq(dai), 1);
- interrupt_enable(dmic_irq(dai));
- return 0;
+}
+/* DMIC has no loopback support */ +static inline int dmic_set_loopback_mode(struct dai *dai, uint32_t lbm) +{
- return -EINVAL;
+}
+const struct dai_ops dmic_ops = {
- .trigger = dmic_trigger,
- .set_config = dmic_set_config,
- .pm_context_store = dmic_context_store,
- .pm_context_restore = dmic_context_restore,
- .probe = dmic_probe,
- .set_loopback_mode = dmic_set_loopback_mode,
+};
[cut here]