Re: [alsa-devel] [PATCH RFC 26/46] drivers/base: provide an infrastructure for componentised subsystems
I've chatted a bit with Hans Verkuil about this topic at fosdem and apparently both v4l and alsa have something like this already in their helper libraries. Adding more people as fyi in case they want to switch to the new driver core stuff from Russell. -Daniel
On Thu, Jan 2, 2014 at 10:27 PM, Russell King rmk+kernel@arm.linux.org.uk wrote:
Subsystems such as ALSA, DRM and others require a single card-level device structure to represent a subsystem. However, firmware tends to describe the individual devices and the connections between them.
Therefore, we need a way to gather up the individual component devices together, and indicate when we have all the component devices.
We do this in DT by providing a "superdevice" node which specifies the components, eg:
imx-drm { compatible = "fsl,drm"; crtcs = <&ipu1>; connectors = <&hdmi>; };
The superdevice is declared into the component support, along with the subcomponents. The superdevice receives callbacks to locate the subcomponents, and identify when all components are present. At this point, we bind the superdevice, which causes the appropriate subsystem to be initialised in the conventional way.
When any of the components or superdevice are removed from the system, we unbind the superdevice, thereby taking the subsystem down.
Signed-off-by: Russell King rmk+kernel@arm.linux.org.uk
drivers/base/Makefile | 2 +- drivers/base/component.c | 379 +++++++++++++++++++++++++++++++++++++++++++++ include/linux/component.h | 31 ++++ 3 files changed, 411 insertions(+), 1 deletions(-) create mode 100644 drivers/base/component.c create mode 100644 include/linux/component.h
diff --git a/drivers/base/Makefile b/drivers/base/Makefile index 94e8a80e87f8..870ecfd503af 100644 --- a/drivers/base/Makefile +++ b/drivers/base/Makefile @@ -1,6 +1,6 @@ # Makefile for the Linux device tree
-obj-y := core.o bus.o dd.o syscore.o \ +obj-y := component.o core.o bus.o dd.o syscore.o \ driver.o class.o platform.o \ cpu.o firmware.o init.o map.o devres.o \ attribute_container.o transport_class.o \ diff --git a/drivers/base/component.c b/drivers/base/component.c new file mode 100644 index 000000000000..5492cd8d2247 --- /dev/null +++ b/drivers/base/component.c @@ -0,0 +1,379 @@ +/*
- Componentized device handling.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License version 2 as
- published by the Free Software Foundation.
- This is work in progress. We gather up the component devices into a list,
- and bind them when instructed. At the moment, we're specific to the DRM
- subsystem, and only handles one master device, but this doesn't have to be
- the case.
- */
+#include <linux/component.h> +#include <linux/device.h> +#include <linux/kref.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/slab.h>
+struct master {
struct list_head node;
struct list_head components;
bool bound;
const struct component_master_ops *ops;
struct device *dev;
+};
+struct component {
struct list_head node;
struct list_head master_node;
struct master *master;
bool bound;
const struct component_ops *ops;
struct device *dev;
+};
+static DEFINE_MUTEX(component_mutex); +static LIST_HEAD(component_list); +static LIST_HEAD(masters);
+static struct master *__master_find(struct device *dev, const struct component_master_ops *ops) +{
struct master *m;
list_for_each_entry(m, &masters, node)
if (m->dev == dev && (!ops || m->ops == ops))
return m;
return NULL;
+}
+/* Attach an unattached component to a master. */ +static void component_attach_master(struct master *master, struct component *c) +{
c->master = master;
list_add_tail(&c->master_node, &master->components);
+}
+/* Detach a component from a master. */ +static void component_detach_master(struct master *master, struct component *c) +{
list_del(&c->master_node);
c->master = NULL;
+}
+int component_master_add_child(struct master *master,
int (*compare)(struct device *, void *), void *compare_data)
+{
struct component *c;
int ret = -ENXIO;
list_for_each_entry(c, &component_list, node) {
if (c->master)
continue;
if (compare(c->dev, compare_data)) {
component_attach_master(master, c);
ret = 0;
break;
}
}
return ret;
+} +EXPORT_SYMBOL_GPL(component_master_add_child);
+/* Detach all attached components from this master */ +static void master_remove_components(struct master *master) +{
while (!list_empty(&master->components)) {
struct component *c = list_first_entry(&master->components,
struct component, master_node);
WARN_ON(c->master != master);
component_detach_master(master, c);
}
+}
+/*
- Try to bring up a master. If component is NULL, we're interested in
- this master, otherwise it's a component which must be present to try
- and bring up the master.
- Returns 1 for successful bringup, 0 if not ready, or -ve errno.
- */
+static int try_to_bring_up_master(struct master *master,
struct component *component)
+{
int ret = 0;
if (!master->bound) {
/*
* Search the list of components, looking for components that
* belong to this master, and attach them to the master.
*/
if (master->ops->add_components(master->dev, master)) {
/* Failed to find all components */
master_remove_components(master);
ret = 0;
goto out;
}
if (component && component->master != master) {
master_remove_components(master);
ret = 0;
goto out;
}
/* Found all components */
ret = master->ops->bind(master->dev);
if (ret < 0) {
master_remove_components(master);
goto out;
}
master->bound = true;
ret = 1;
}
+out:
return ret;
+}
+static int try_to_bring_up_masters(struct component *component) +{
struct master *m;
int ret = 0;
list_for_each_entry(m, &masters, node) {
ret = try_to_bring_up_master(m, component);
if (ret != 0)
break;
}
return ret;
+}
+static void take_down_master(struct master *master) +{
if (master->bound) {
master->ops->unbind(master->dev);
master->bound = false;
}
master_remove_components(master);
+}
+int component_master_add(struct device *dev, const struct component_master_ops *ops) +{
struct master *master;
int ret;
master = kzalloc(sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->dev = dev;
master->ops = ops;
INIT_LIST_HEAD(&master->components);
/* Add to the list of available masters. */
mutex_lock(&component_mutex);
list_add(&master->node, &masters);
ret = try_to_bring_up_master(master, NULL);
if (ret < 0) {
/* Delete off the list if we weren't successful */
list_del(&master->node);
kfree(master);
}
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
+} +EXPORT_SYMBOL_GPL(component_master_add);
+void component_master_del(struct device *dev, const struct component_master_ops *ops) +{
struct master *master;
mutex_lock(&component_mutex);
master = __master_find(dev, ops);
if (master) {
take_down_master(master);
list_del(&master->node);
kfree(master);
}
mutex_unlock(&component_mutex);
+} +EXPORT_SYMBOL_GPL(component_master_del);
+static void component_unbind(struct component *component,
struct master *master, void *data)
+{
WARN_ON(!component->bound);
component->ops->unbind(component->dev, master->dev, data);
component->bound = false;
/* Release all resources claimed in the binding of this component */
devres_release_group(component->dev, component);
+}
+void component_unbind_all(struct device *master_dev, void *data) +{
struct master *master;
struct component *c;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return;
list_for_each_entry_reverse(c, &master->components, master_node)
component_unbind(c, master, data);
+} +EXPORT_SYMBOL_GPL(component_unbind_all);
+static int component_bind(struct component *component, struct master *master,
void *data)
+{
int ret;
/*
* Each component initialises inside its own devres group.
* This allows us to roll-back a failed component without
* affecting anything else.
*/
if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
return -ENOMEM;
/*
* Also open a group for the device itself: this allows us
* to release the resources claimed against the sub-device
* at the appropriate moment.
*/
if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
devres_release_group(master->dev, NULL);
return -ENOMEM;
}
dev_dbg(master->dev, "binding %s (ops %ps)\n",
dev_name(component->dev), component->ops);
ret = component->ops->bind(component->dev, master->dev, data);
if (!ret) {
component->bound = true;
/*
* Close the component device's group so that resources
* allocated in the binding are encapsulated for removal
* at unbind. Remove the group on the DRM device as we
* can clean those resources up independently.
*/
devres_close_group(component->dev, NULL);
devres_remove_group(master->dev, NULL);
dev_info(master->dev, "bound %s (ops %ps)\n",
dev_name(component->dev), component->ops);
} else {
devres_release_group(component->dev, NULL);
devres_release_group(master->dev, NULL);
dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
dev_name(component->dev), component->ops, ret);
}
return ret;
+}
+int component_bind_all(struct device *master_dev, void *data) +{
struct master *master;
struct component *c;
int ret = 0;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return -EINVAL;
list_for_each_entry(c, &master->components, master_node) {
ret = component_bind(c, master, data);
if (ret)
break;
}
if (ret != 0) {
list_for_each_entry_continue_reverse(c, &master->components,
master_node)
component_unbind(c, master, data);
}
return ret;
+} +EXPORT_SYMBOL_GPL(component_bind_all);
+int component_add(struct device *dev, const struct component_ops *ops) +{
struct component *component;
int ret;
component = kzalloc(sizeof(*component), GFP_KERNEL);
if (!component)
return -ENOMEM;
component->ops = ops;
component->dev = dev;
dev_dbg(dev, "adding component (ops %ps)\n", ops);
mutex_lock(&component_mutex);
list_add_tail(&component->node, &component_list);
ret = try_to_bring_up_masters(component);
if (ret < 0) {
list_del(&component->node);
kfree(component);
}
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
+} +EXPORT_SYMBOL_GPL(component_add);
+void component_del(struct device *dev, const struct component_ops *ops) +{
struct component *c, *component = NULL;
mutex_lock(&component_mutex);
list_for_each_entry(c, &component_list, node)
if (c->dev == dev && c->ops == ops) {
list_del(&c->node);
component = c;
break;
}
if (component && component->master)
take_down_master(component->master);
mutex_unlock(&component_mutex);
WARN_ON(!component);
kfree(component);
+} +EXPORT_SYMBOL_GPL(component_del);
+MODULE_LICENSE("GPL v2"); diff --git a/include/linux/component.h b/include/linux/component.h new file mode 100644 index 000000000000..73657636db0b --- /dev/null +++ b/include/linux/component.h @@ -0,0 +1,31 @@ +#ifndef COMPONENT_H +#define COMPONENT_H
+struct device;
+struct component_ops {
int (*bind)(struct device *, struct device *, void *);
void (*unbind)(struct device *, struct device *, void *);
+};
+int component_add(struct device *, const struct component_ops *); +void component_del(struct device *, const struct component_ops *);
+int component_bind_all(struct device *, void *); +void component_unbind_all(struct device *, void *);
+struct master;
+struct component_master_ops {
int (*add_components)(struct device *, struct master *);
int (*bind)(struct device *);
void (*unbind)(struct device *);
+};
+int component_master_add(struct device *, const struct component_master_ops *); +void component_master_del(struct device *, const struct component_master_ops *);
+int component_master_add_child(struct master *master,
int (*compare)(struct device *, void *), void *compare_data);
+#endif
1.7.4.4
dri-devel mailing list dri-devel@lists.freedesktop.org http://lists.freedesktop.org/mailman/listinfo/dri-devel
On Fri, Feb 07, 2014 at 10:04:30AM +0100, Daniel Vetter wrote:
I've chatted a bit with Hans Verkuil about this topic at fosdem and apparently both v4l and alsa have something like this already in their helper libraries. Adding more people as fyi in case they want to switch to the new driver core stuff from Russell.
It's not ALSA, but ASoC which has this. Mark is already aware of this and will be looking at it from an ASoC perspective.
On Fri, 7 Feb 2014 09:46:56 +0000 Russell King - ARM Linux linux@arm.linux.org.uk wrote:
On Fri, Feb 07, 2014 at 10:04:30AM +0100, Daniel Vetter wrote:
I've chatted a bit with Hans Verkuil about this topic at fosdem and apparently both v4l and alsa have something like this already in their helper libraries. Adding more people as fyi in case they want to switch to the new driver core stuff from Russell.
It's not ALSA, but ASoC which has this. Mark is already aware of this and will be looking at it from an ASoC perspective.
Russell,
I started to use your code (which works fine, thanks), and it avoids a lot of problems, especially, about probe_defer in a DT context.
I was wondering if your componentised mechanism could be extended to the devices defined by DT.
In the DT, when a device_node is a phandle, this means it is referenced by some other device(s), and these device(s) will not start until the phandle device is registered.
Then, the idea is to do a component_add() for such phandle devices in device_add() (device_register).
Pratically,
- the component_add() call in device_register would not include any bind/unbind callback function, so, this should be tested in component_bind/unbind(),
- component_add would not be called if the device being added already called component_add in its probe function. A simple flag in the struct device_node should solve this problem.
What do you think about this?
On Fri, Feb 07, 2014 at 12:57:21PM +0100, Jean-Francois Moine wrote:
I started to use your code (which works fine, thanks), and it avoids a lot of problems, especially, about probe_defer in a DT context.
I was wondering if your componentised mechanism could be extended to the devices defined by DT.
It was developed against imx-drm, which is purely DT based. I already have a solution for the cubox armada DRM.
participants (3)
-
Daniel Vetter
-
Jean-Francois Moine
-
Russell King - ARM Linux